

Multiple Phase Flow

Burhan S Abdulrazak, Ph.D. Chemical Engineering Department

كلية الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Introduction

The **drift-flux model** is a multiphase flow model that describes the relative motion between phases in systems such as gas-liquid, liquid-solid, or gas-solid flows. It bridges the gap between the **homogeneous flow model** (no slip between phases) and the **separated flow model** (full slip consideration) by incorporating the effects of relative motion (or drift) between phases.

The drift-flux model is particularly useful for analyzing phase distributions and calculating parameters like void fraction, flow rates, and velocities in practical engineering systems.

كلبة الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Key Assumptions

Slip Between Phases:

Different phases can flow at different velocities $(u_g \neq u_l)$, but their behavior is coupled.

Uniform Distribution:

• The phases are assumed to be uniformly distributed within the control volume or cross-sectional area.

Single Velocity Field:

The model uses a weighted-average mixture velocity (u_m) to describe the bulk flow.

Drift Velocity:

• The relative velocity (drift velocity) between phases is explicitly modeled.

كلية الصندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Governing Equations

1. Mixture Velocity (u_m)

The mixture velocity is the volumetric flux averaged over all phases:

$$u_{\rm m} = \alpha_{\rm g} u_{\rm g} + \alpha_{\rm l} u_{\rm l}$$

Where:

- um: Mixture velocity
- ug,ul: Gas and liquid phase velocities
- $\alpha g, \alpha l$: Volume fractions of gas and liquid phases ($\alpha_g + \alpha_l = 1$)

2. Phase Velocity Relationship

The velocity of a phase (e.g., gas) can be expressed as:

$$u_{g} = u_{m} + V_{gj} (1 - \alpha_{g})$$

Where:

• V_{gj} : Drift velocity of gas relative to the mixture.

Similarly, for the liquid phase:

COLLEGE OF ENGINEERING - كلبة الهندسة $u_l \stackrel{u_l}{=} u_m - V_{gj} \alpha_g$ Tikrit University - جامعة تكريت

3. Drift Velocity (V_{gj})

The drift velocity represents the relative motion between phases and depends on any way

- Gravity
- Buoyancy
- Shear forces
- Flow regime

Empirical correlations are often used to estimate V_{gj} , such as Zuber and Findlay's drift flux correlation:

$$V_{gj} = C_0 \cdot j + V_d$$

Where:

- C_0 : Distribution coefficient (accounts for phase distribution and flow regime)
- j: Mixture volumetric flux (j = u_m)
- V_d: Drift velocity under static conditions

كلبة الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

4. Void Fraction (α_g)

The void fraction can be related to the mixture velocity and drift velocity as:

 $\alpha_{g} = \frac{J_{g}}{C_{o}i + V_{d}}$

• $j_g = \alpha_g u_g$: Superficial gas velocity

Key Parameters

Void Fraction (α_g) :

• The fraction of the pipe cross-sectional area occupied by the gas phase.

Drift Velocity (V_{gj}):

• Describes the relative motion of gas phase to

College of engineering - كلبة الهندسة

جامعة تكريت - Tikrit University

Distribution Coefficient (C₀):

• Depends on the flow regime and geometry.

Flow Quality (*x*):

• The mass fraction of the gas phase:

$$\mathbf{x} = \frac{\mathbf{m'_g}}{\mathbf{m'_g} + \mathbf{m'_l}}$$

كلية المندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Applications

Nuclear Reactor Safety Analysis:

• Predicts phase distribution in coolant systems of boiling water reactors.

Oil and Gas Industry:

• Used in modeling multiphase flow in pipelines and risers.

Heat Exchangers:

 Analyzes void fraction and phase velocities in evaporators and condensers.

Chemical Reactors:

• Models gas-liquid distribution in bubble column reactors.

كلية الصندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Advantages

Realistic Phase Interaction:

 Incorporates phase slip, improving accuracy compared to the homogeneous flow model.

Computational Simplicity:

 Less complex than the separated flow model while providing reasonable accuracy.

Empirical Correlations:

• Well-supported by experimental data for common systems.

كلبة الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Limitations

Empirical Dependence:

• Requires correlations (e.g., C_0 , V_d) that may not generalize to all conditions.

Simplified Assumptions:

 Assumes uniform distribution and single-dimensional flow, limiting its applicability to complex flows.

Inaccuracy for Strongly Stratified Flows:

• Fails to capture phase separation in highly stratified regimes.

كلبة الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Example Calculation

Problem:

A vertical pipe carries a gas-liquid mixture with the following properties:

- Gas superficial velocity $(j_g) = 3 \text{ m/s}$
- Mixture superficial velocity $(j = u_m) = 5 m/s$
- Drift velocity under static conditions $(V_d) = 1 \text{ m/s}$
- Distribution coefficient $(C_0) = 1.2$

Find the void fraction (α_g) .

Solution:

The void fraction is calculated using the equation:

$$\alpha_{g} = \frac{j_{g}}{C_{0}j + V_{d}}$$

جامعة تكريت - Tikrit University

Substitute the given values:

$$\alpha_{\rm g} = \frac{3}{1.2(5)+1} = \frac{3}{7} = 0.4286$$

Result:

 $\alpha_{g} \approx 0.43$ (43% of the pipe cross-sectional area is occupied by gas)}.

كلية الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Conclusion

The **drift-flux model** is a versatile tool for analyzing multiphase flows where wave success phase separation and slip are significant. By incorporating drift velocity and void fraction, it provides a realistic yet computationally efficient representation of multiphase systems. However, its reliance on empirical correlations requires careful application and validation.

كلبة الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University